Nhựa sinh học được tạo ra như thế nào?

Nội dung bài viết

expand_more

Khi thế giới nhận thức được tác hại của nhựa đối với môi trường, người ta ngày càng quan tâm đến nhựa sinh học. Nhựa sinh học được tạo ra như thế nào? Trong bài viết này, chúng ta sẽ thảo luận về quy trình từng bước sản xuất nhựa sinh học.

Nhựa sinh học được tạo ra như thế nào?

1. Nhựa sinh học là gì ?

Nhựa sinh học là nhựa được làm từ các nguồn tài nguyên tái tạo, chẳng hạn như bột ngô hoặc mía. Không phải tất cả các loại nhựa sinh học đều có thể phân hủy hoàn toàn. Có 3 loại chính: nhựa sinh học gốc sinh học, nhựa tự hủy sinh học và nhựa gốc sinh học có thể phân hủy.

Vì nhựa sinh học được tạo ra từ nguồn sinh khối nên chúng có thể dễ dàng phân hủy và tái chế hơn. Nhựa sinh học ít gây hại cho môi trường hơn và dần trở thành loại vật liệu thay thế bền vững cho nhựa truyền thống.

Để hiểu cặn kẽ về định nghĩa nhựa sinh học, bạn có thể đọc thêm tại đây: Nhựa kỹ thuật sinh học là gì?

Nhựa sinh học là gì

2. Nhựa sinh học được tạo ra như thế nào?

2.1. Nguyên liệu để sản xuất nhựa sinh học

Trước khi biết cách tạo ra nhựa sinh học, bạn phải hiểu được nhựa sinh học được làm từ gì. Các kỹ sư đã tạo ra nhựa sinh học từ nhiều nguồn sinh khối khác nhau. Việc chọn nguồn sinh khối phù hợp rất quan trọng để có thể làm ra những vật liệu đạt được chất lượng và đảm bảo tính bền vững về môi trường và tài chính đối với hàng hóa sẵn sàng cho mở rộng quy mô thị trường.

Các nguyên liệu thô được sử dụng để tạo ra nhựa sinh học sẽ khác nhau tùy thuộc vào loại nhựa sinh học được sản xuất. Một số nguyên liệu thô được sử dụng phổ biến nhất trong quá trình sản xuất nhựa sinh học bao gồm:

Tinh bột ngô

Tinh bột ngô là nguyên liệu nổi bật để sản xuất nhựa sinh học gốc sinh học. Tinh bột ngô được chiết xuất từ nội nhũ của hạt ngô và sau đó trộn với glycerol để tạo ra một loạt các loại nhựa sinh học.

Ưu điểm  Nhược điểm 
-Tinh bột ngô chiếm hơn 85% lượng tinh bột toàn cầu, điều đó có nghĩa là thành phần này có giá thấp và luôn sẵn có.
-Việc sản xuất nhựa sinh học từ tinh bột rất đơn giản
-Các sản phẩm cuối cùng có hiệu suất cao và khả năng phân hủy sinh học
-Nhựa làm từ ngô sẽ chỉ có thể phân hủy trong cơ sở ủ phân thương mại có môi trường nóng và ẩm.

Tinh bột khoai tây

Một nguyên liệu thực vật khác chính là tinh bột khoai tây. Tinh bột khoai tây là thành phần chính để tạo ra nhiều loại nhựa sinh học, trong đó có axit polylactic (PLA). PLA là một loại nhựa sinh học có khả năng phân hủy sinh học thường được sử dụng trong bao bì thực phẩm.

Tinh bột được chiết xuất từ khoai tây và trộn với các thành phần tự nhiên khác như glycerol và nước. Hỗn hợp này sau đó được làm nóng và đúc thành hình dạng mong muốn.

Ưu điểm  Nhược điểm 
-Khoai tây là loại cây trồng phổ biến và bền vững
-Nhựa sinh học làm từ tinh bột khoai tây có khả năng phân hủy sinh học và có thể phân hủy tự nhiên theo thời gian
 
-Quá trình sản xuất có thể tốn kém và tốn nhiều năng lượng
-Nhựa sinh học thu được có thể không có độ bền hoặc sức chịu đựng như nhựa truyền thống

Nhựa nhiệt dẻo làm từ tinh bột chiếm khoảng một nửa thị trường nhựa sinh học. Trong những năm gần đây, mọi người dần chú trọng hơn đến vật liệu tổng hợp nano dựa trên tinh bột cải tiến. Trong quá trình thử nghiệm, những vật liệu nano này đã thể hiện các đặc tính cơ học, nhiệt, kỵ nước và chặn khí đáng chú ý.

Nguyên liệu để sản xuất nhựa sinh học - tinh bột khoai tây

Mía

Mía là một nguyên liệu phổ biến khác cho nhựa sinh học được làm từ nguồn tài nguyên sinh học. Đầu tiên, mía được thu hoạch và xử lý để chiết xuất đường, sau đó được lên men để tạo ra một loại cồn  gọi là ethanol. Ethanol này sau đó có thể được sử dụng làm nguyên liệu để sản xuất nhựa sinh học. Nhựa làm từ mía phù hợp với nhiều loại hàng hóa nhựa khác nhau, từ dụng cụ ăn uống cho  đến dụng cụ y tế.

Ưu điểm  Nhược điểm 
-Nhựa sinh học từ mía đường có thể được tái chế
-Mía còn hấp thụ khí cacbonic
-Chất thải của mía đường, được gọi là bã mía, được sử dụng để tạo ra điện phục vụ cho quá trình sản xuất nhựa sinh học
 
-Nhựa sinh học mía đường không thể phân hủy sinh học hoặc ủ phân hoàn toàn.

Cellulose

Một nguồn sinh khối phổ biến khác cho nhựa sinh học là cellulose. Cellulose là một chất hữu cơ được chiết xuất từ thành tế bào thực vật.

Sau khi chiết xuất, nó sẽ được trộn với các thành phần khác như chất hóa dẻo, chất tạo màu và các chất phụ gia khác để tạo ra nhựa sinh học. Các sản phẩm cuối cùng có thể được sử dụng trong nhiều ứng dụng khác nhau, chẳng hạn như bao bì, dao kéo dùng một lần và thậm chí cả quần áo thay thế cho nhựa truyền thống.

Ưu điểm  Nhược điểm 
-Với sản lượng hàng năm khoảng 180 tỷ tấn, cellulose là thành phần hữu cơ tự nhiên phong phú nhất trên toàn cầu.
-Cải thiện tính chất cơ học của nhựa sinh học, chẳng hạn như giảm tính thấm nước
-Giảm lượng khí thải carbon
-Sản xuất nhựa sinh học cellulose có thể làm tăng khả năng phú dưỡng và sử dụng đất so với nhựa hóa dầu
-Việc chiết xuất cellulose có thể phức tạp và tốn kém

Tảo

Tảo và vi khuẩn lam khá phổ biến trong ngành công nghiệp nhựa sinh học nhờ nhu cầu dinh dưỡng thấp, khả năng thu hoạch quanh năm và có thể tồn tại trong môi trường không canh tác được như nước thải.

Nhựa sinh học có nguồn gốc từ tảo vẫn đang trong giai đoạn phát triển ban đầu, nhưng chúng có tiềm năng trở thành một giải pháp thay thế bền vững hơn cho nhựa tiêu chuẩn. Chúng cũng được sử dụng trong nhiều ứng dụng, bao gồm các ứng dụng hiển thị điện tử, bao bì thực phẩm, cho dù là bảo quản tươi hay lâu dài, màng nhà kính, lưới bảo vệ hoặc bao tải trồng trọt.

Ưu điểm  Nhược điểm 
-Cải thiện khả năng phân hủy sinh học của nhựa
-Không phải tất cả các chủng tảo đều có thể thích nghi với nhiều loại môi trường

Các nguồn tài nguyên khác

Polysacarit như chitosan cũng có thể được sử dụng để sản xuất nhựa sinh học. Chitosan có thể được hòa tan trong môi trường axit nhẹ nên thích hợp để sản xuất màng phim.

Các kỹ sư từ Đại học Yale, Đại học Wisconsin và Đại học Maryland gần đây đã phát triển một loại polime sinh học "lignocellulose" từ bột gỗ. Bột gỗ là một loại phế liệu rẻ tiền, phổ biến của các sản phẩm gỗ và có thể dùng làm nền tảng cho loại nhựa sinh học mới.

2.2. Quy trình sản xuất nhựa sinh học

Làm thế nào để tạo ra nhựa sinh học? Hiện có nhiều loại nhựa sinh học được sản xuất bằng các quy trình sản xuất khác nhau. Các nhà máy có thể sử dụng cơ sở hạ tầng sản xuất nhựa hiện có để sản xuất nhựa sinh học tương tự về mặt hóa học với các chất tương đương từ dầu mỏ. PE sinh học, PET sinh học hoặc PP sinh học có thể được sản xuất theo quy trình tương tự như PE, PET và PP thông thường.

Mặt khác, một số loại nhựa sinh học mới hoàn toàn được sản xuất bằng các quy trình sản xuất dựa trên sinh học. Các quá trình này có thể là phản ứng vi sinh vật hoặc quá trình tổng hợp công nghệ nano như tăng trưởng epiticular.

Cách cuối cùng để tạo ra nhựa sinh học là chiết xuất polymer từ vi sinh vật. Quy trình này bắt đầu bằng quá trình ly tâm để phân lập vi sinh vật, tiếp theo là lọc ép và sấy khô nhựa sinh học thu được.

Vi khuẩn được sử dụng trong phương pháp này đôi khi được biến đổi gen để chuyển hóa cho đa dạng hơn và để tăng hiệu quả chuyển đổi nguyên liệu thành polyme. Polyhydroxyalkanoates (PHA) là loại nhựa sinh học được nghiên cứu rộng rãi nhất được tạo nên từ kỹ thuật này.

Quy trình sản xuất nhựa sinh học

2.3. Chi phí để tạo ra nhựa sinh học

Sản xuất nhựa sử dụng tài nguyên sinh học là một giải pháp khả thi để giảm lượng cacbon trong sản xuất nhựa và giải quyết vấn đề rác thải nhựa. Tuy nhiên, theo ước tính của European Bioplastics (2020), chỉ 1% trong số hơn 368 triệu tấn nhựa trên thế giới là nhựa sinh học hoặc có thể phân hủy sinh học.

Các phương pháp sản xuất sản phẩm thay thế dựa trên phụ phẩm nông nghiệp hoặc phế liệu đã có từ khá lâu. Tuy nhiên, chi phí của quy trình sản xuất này vẫn được coi là một trở ngại.

Theo nghiên cứu được công bố trên tạp chí Cleaner Engineering and Technology vào năm 2022, chi phí sản xuất nhựa sinh học axit polylactic (PLA) dao động từ $844/t đến $2,410/t. Chi phí sản xuất dao động lớn đến như vậy bởi vì cách chọn nguồn nguyên liệu, công nghệ sản xuất cũng như chi phí cho nguồn năng lượng, lao động và vốn khác nhau.

Chi phí để tạo ra nhựa sinh học

3. Làm thế nào để nhựa sinh học bền hơn?

Có một số cách để làm cho nhựa sinh học bền hơn:

  • Gia cố bằng sợi tự nhiên: Thêm sợi tự nhiên, chẳng hạn như lanh, gai hoặc tre, có thể làm tăng độ bền của nhựa sinh học. Trong quá trình sản xuất, các nhà sản xuất có thể thêm các sợi này để tạo ra vật liệu composite cứng hơn và bền hơn.
  • Tăng tỉ lệ polyme: Nhựa sinh học được làm từ sự kết hợp của polyme tự nhiên và các chất phụ gia khác. Tăng nồng độ polyme tự nhiên, chẳng hạn như cellulose hoặc tinh bột, có thể cải thiện độ bền và độ cứng của sản phẩm cuối cùng.
  • Thêm chất hóa dẻo: Chất hóa dẻo là chất được thêm vào nhựa để cải thiện tính linh hoạt và độ bền của chúng. Thêm chất hóa dẻo vào nhựa sinh học có thể làm cho chúng có khả năng chống vỡ hoặc nứt tốt hơn.
  • Sửa đổi quy trình sản xuất: Quy trình cũng có thể được sửa đổi để cải thiện độ bền của nhựa sinh học. Ví dụ, việc thay đổi nhiệt độ, áp suất hoặc thời lượng của quy trình sản xuất có thể ảnh hưởng đến các đặc tính của sản phẩm cuối cùng.

Mặt khác, làm thế nào để nhựa sinh học không thấm nước? Các nhà sản xuất có thể thêm chất chống thấm hoặc lớp phủ chống thấm để cải thiện đặc tính chống nước của nhựa sinh học.

Mặc dù nhựa sinh học vẫn có nhược điểm nhưng vẫn có thể cải thiện được. Bằng cách kết hợp các phương pháp này, các nhà nghiên cứu và kỹ sư có thể tạo ra nhựa sinh học không chỉ có độ bền cao mà còn có tính bền vững và có thể phân hủy sinh học. Với những nỗ lực và đổi mới không ngừng, chúng ta có thể khiến thay thế nhựa truyền thống bằng nhựa sinh học và mở đường cho một tương lai có ý thức hơn về bảo vệ môi trường.

Làm thế nào để nhựa sinh học bền hơn

4. Sản phẩm phổ biến làm từ nhựa sinh học

Khi mọi người dần trở nên có ý thức hơn về môi trường, nhu cầu về các sản phẩm thân thiện với môi trường tăng lên và nhựa sinh học đã nổi lên như một giải pháp đầy hứa hẹn. Dưới đây là một số sản phẩm phổ biến được làm từ nhựa sinh học:

  • Bao bì thực phẩm: túi, hộp đựng và màng.
  • Dao kéo và bộ đồ ăn dùng một lần: đồ dùng một lần, cốc và đĩa
  • Những chậu cây
  • Các túi mua sắm
  • Quần áo
  • Sợi in 3D
  • Đồ chơi

Đây chỉ là một vài ví dụ về các sản phẩm có thể được làm từ nhựa sinh học. Khi công nghệ tiếp tục được cải thiện, ngày càng có nhiều sản phẩm có khả năng được tạo ra bằng nhựa sinh học trong tương lai.

Sản phẩm phổ biến làm từ nhựa sinh học

5. BiONext - Nhựa sinh học cải tiến có thể phân hủy sinh học từ EuroPlas

BiONext là sản phẩm nhựa sinh học được phát triển bởi EuroPlas, công ty hàng đầu trong lĩnh vực nhựa. BiONext là một giải pháp thay thế thân thiện với môi trường cho các sản phẩm nhựa truyền thống, vì nó có nguồn gốc từ các nguồn sinh khối bền vững như PLA, PHA, thực vật và rau quả (ngô, dầu cọ, khoai tây) hoặc nhiên liệu hóa thạch (PBAT)

Không giống như nhựa truyền thống có nguồn gốc từ nhiên liệu hóa thạch không thể tái tạo có thể mất hàng trăm năm để phân hủy, BiONext có thể phân hủy sinh học trong vòng 12 tháng.

BiONext rất linh hoạt và được sử dụng trong nhiều sản phẩm khác nhau, bao gồm bao bì thực phẩm, túi xách, đồ dùng và thậm chí cả linh kiện ô tô. Nó cũng chịu nhiệt và có thể được đúc thành các hình dạng và kích cỡ khác nhau, làm cho nó trở thành lựa chọn phổ biến của các nhà sản xuất và người tiêu dùng.

Nhựa sinh học EuroPlas có các đặc tính tương tự như nhựa truyền thống nhưng có thêm lợi ích là thân thiện với môi trường và giảm lượng khí thải carbon. Sản phẩm của chúng tôi là giải pháp thay thế bền vững và có trách nhiệm cho nhựa thông thường, giúp giảm tác động môi trường của rác thải nhựa và thúc đẩy  nền kinh tế tuần hoàn hơn.

Liên hệ ngay với EuroPlas để tìm hiểu thêm chi tiết về BiONext.

BiONext - Nhựa sinh học cải tiến có thể phân hủy sinh học từ EuroPlas

Nhựa sinh học là một giải pháp thay thế đầy hứa hẹn cho nhựa truyền thống, vì chúng được làm từ các nguồn tái tạo và có thể phân hủy sinh học hoặc có thể làm phân trộn. Và bài viết này đã trả lời câu hỏi “Nhựa sinh học được tạo ra như thế nào?” Chúng được sản xuất thông qua các quy trình khác nhau và sự pha trộn của các nguyên liệu tự nhiên như tinh bột ngô, mía và dầu thực vật.

Với những tiến bộ trong công nghệ và nâng cao nhận thức về tác hại của nhựa truyền thống đối với môi trường, nhựa sinh học dự kiến sẽ sớm trở nên phổ biến hơn. Khi người tiêu dùng và các ngành công nghiệp ưu tiên tính bền vững, nhu cầu về nhựa sinh học sẽ chỉ tăng lên, tạo ra một tương lai bền vững và thân thiện với môi trường hơn cho tất cả mọi người. 

Tin tức khác
PEKK vs PEEK: Những điểm khác biệt bạn cần biết
Giữa PEKK và PEEK thường có nhiều điểm khác biệt dễ bị bỏ qua. Hiểu rõ các đặc tính riêng biệt này giúp lựa chọn giải pháp sản xuất phù hợp và hiệu quả hơn.
 
Tất cả những gì bạn cần biết về nhựa PEKK
Có bao giờ bạn thắc mắc tại sao nhựa PEKK nổi bật so với các vật liệu khác không? Cùng giải mã tại sao PEKK lại tương thích cho nhiều lĩnh vực đến vậy.
 
EUROPLAS hân hạnh tham dự hội chợ ChinaPlas 2024
Sẵn sàng bứt phá cùng EUROPLAS tại ChinaPlas 2024 - Hội chợ Nhựa hàng đầu Châu Á.
Các loại nhựa nào có thể sử dụng trong lò vi sóng?
Hộp nhựa được dùng trong lò vi sóng ngày càng phổ biến nhờ tính tiện lợi của chúng. Để hạn chế rủi ro sức khỏe, xác định các loại nhựa an toàn khi sử dụng trong lò vi sóng là rất quan trọng. Bằng cách theo dõi bài viết này, bạn có thể sử dụng hộp nhựa an toàn trong lò vi sóng.
Vật liệu PVDF có những điểm đặc biệt nào?
Bạn đang tìm kiếm thông tin về vật liệu PVDF? PVDF là một vật liệu đáng chú ý được biết đến với những đặc tính đặc biệt và phạm vi ứng dụng rộng rãi. Trong bài viết này, chúng ta sẽ khám phá các đặc điểm và ứng dụng chính của vật liệu PVDF để tìm hiểu về PVDF được đánh giá cao như thế nào trong các ngành như xử lý hóa chất, hàng không vũ trụ, điện tử, v.v. 

Chia sẻ nhận xét về sản phẩm

Gửi nhận xét
GỬI ĐÁNH GIÁ CỦA BẠN
Đánh giá
Gửi
arrow_upward